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Abstract. A simple model density functional Hamiltonian is shown to lead to a consistent 
static and dynamical theory of the structural glass transition where glassy metastable 
free-energy states play a key role. The crucial concept introduced is a probabalistic order 
parameter description that results when multiple solutions of the density functional theory 
are considered where each solution is given a canonical weight. The theory suggests that 
there are two distinct transition temperatures (or densities). At the higher transition 
temperature an extensive number of well defined global metastable states appear for the 
first time. At the lower transition temperature the number of relevant glassy metastable 
states becomes non-extensive. 

In this letter we present a consistent static and dynamical description of a model liquid 
approaching a structural glass (STG) transition (for a recent review of structural glasses, 
see [I]). Physically our model calculation implies that below a temperature (region) 
denoted TA the long-time dynamics is controlled by multiple metastable glassy free- 
energy states. To develop these concepts we think it is crucial to view the glass transition 
as both a static and a dynamical phenomenon. Even when a liquid is kinetically 
trapped in a locally stable metastable state, that state can be described using a static 
theory. In order to control our calculations we will use a somewhat unrealistic model 
density functional Hamiltonian (DFH) for the liquid state. Because of this, the ideas 
presented here should be regarded as a possible theoretical scenario for the STG 

transition. Throughout this letter we also ignore the fact that in general the STG 

transition will occur only if crystallisation is avoided by rapid quenching [I]. If the 
time it takes to form a crystal is long compared with the relatively slow cooling, one 
can obtain disordered glassy states while maintaining the liquid close to (metastable) 
equilibrium. This is the case for good glass-forming materials. For metallic glasses 
on the other hand where the natural relaxation times are quite short (-1O-’’s) one 
requires rapid cooling to prevent the system from forming nucleating centres leading 
to crystallisation. Thus metallic glasses are systems far from equilibrium and hence 
are different from the systems considered here. The theoretical scenario presented 
here is concerned with generic glass-forming materials and hence we focus only on 
the random solutions of an equilibrium DFH. 
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The model DFH is? 

+k3 I d x l ( S n ( x ~ ) ) ~ + h  dx1(6n(x1))4- dxlH(xl)6n(xl)  I ( l a )  

where p is the inverse temperature, p is the chemical potential, 6n(xl) = n ( x l )  - no is 
a density fluctuation from the mean density no,  H ( x , )  is a small ( + O )  symmetry-breaking 
external field (whose role is discussed in the context of the static approach), and g, 
and g, are small non-linear coupling constants whose magnitude will be chosen such 
that a systematic expansion in density fluctuations is possible. xo( k )  ( k  = wavenumber) 
is related to a bare static structure factor, Xo(k)  = noso( k ) ,  and contains information 
on the short-ranged order present in liquids. In dense simple fluids S(k) is sharply 
peaked at an ordering scale ko( -2 T / ( T ,  (T - molecular diameter). In (1 a )  this implies 
that there is a local tendency for spherically symmetric ordering as is found in liquids 
and in some glasses. DFH such as ( l a )  can be derived from standard statistical 
mechanical ensembles by constraining the microscopic number density to have a 
specified value and then integrating over all microscopic phases, and retaining terms 
up to O((6n) ' ) .  In general the cubic and quartic terms are non-local in space. Because 
this feature does not modify our calculations we ignore this complication$. Below, 
we argue that a controlled dynamic and static description of a glassy phase transition 
is possible if we assume 

X (  k - ko, T )  AT/ [ T~ + ( k  - ko)2] (1b) 

with T,  g, and g, all self-consistently small. We also assume in (1) that T is the only 
variable with a strong temperature dependence and that 7 is a decreasing function of 
T. Notice that in this oversimplified model, ~ ( k  - ko, T )  is not of the Ornstein-Zernicke 
(02) form because of the large (-l/ T )  coefficient multiplying the ( k  - ko)2 term. The 
form chosen in ( l b )  allows us to treat the coupling constants g3 and g, as self- 
consistently small. The calculations presented here can be repeated using oz forms 
for x and one would arrive at similar conclusions if one truncated at a self-consistent 
one-loop order. We show below that the theory necessarily predicts a glass transition 
before T = 0 can be reached. In this letter we do not consider the possibility that under 
appropriate conditions the solution to the theory may also result in periodic density 
waves indicating a transition to a periodically ordered state. 

Substitution of ( l b )  into (1 a )  gives a ( k  - k J 2  term with a large coefficient, - 1 / ~ ,  
for the assumed small T. Therefore our basic model is mean-field like with only one 
length scale dominating and it is this feature that allows for a controlled perturbation 
expansions. We next show by using both static and dynamical techniques that the 
equations (1) lead to a glass transition. 

We start with the dynamical approach. Our basic philosophy is that the glass 
transition is both a static and dynamic phenomenon and there must be a connection 

t For related earlier ideas in STG physics, see [2]. 
i; In general the non-linear terms in ( l a )  arise from an ideal gas entropy term and higher-order direct 
correlation function terms. The direct correlation function terms are in general non-local in space. However, 
if we use ,y given by ( l b )  the non-locality is of no consequence since only one wavenumber, k, ,  is relevant. 
I In traditional mean-field theories the square gradient term in the effective Hamiltonian has an infinite 
coefficient. 
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between the two approaches. Establishing such a connection is only possible if the 
particular dynamics used is irrelevant for the t +. CO behaviour. We choose conservative 
relaxational dynamics, which reflects the fact that at scale k, ,  density fluctuations are 
diffusive [ 3 ] .  The dynamical equations are 

with l (x l t )  the usual Gaussian noise term and To a bare kinetic coefficient which sets 
the microscopic timescale. More general dynamics including 'mode coupling' terms 
will be considered elsewhere. 

We consider the density time correlation function, C (  k, t ) ( 2 ~ ) ~ 8 (  k + k , )  = 

( S n ( k ,  t ) S n ( k , ) ) .  The glassy state is defined by frozen density fluctuations or by a 
non-zero Edwards- Anderson order parameter (for a recent review of spin glasses, see 
[4]), q( k )  = qEA( k )  = lim,-m C (  k, t ) ,  and we assume that the glassy state is statistically 
homogeneous and isotropic. The fact that the glassy state has the same statistical 
properties as the liquid states is necessary to establish connections between static and 
dynamical approaches. 

TreatiFg the non-linear terms in (1) as small, the self-consistent one-loop approxima- 
tion for C ( k ,  w ) ,  the one-sided Fourier transform of C ( k ,  t ) ,  is 

e ( k, w ) = C ( k, t = 0) (-io + T R( k, ) / C ( k, t = 0) ) - I  ( 3 a )  

with C (  k, t = 0) being the renormalised static structure factor, equation (1 b ) ,  and 
T,(k, w )  a renormalised kinetic coefficient 

In ( 3 ) ,  terms of O ( g i ,  gzg,, g i )  have been neglected. They are small if, in dimensionless 
form, 1 >> g ,  >.> g:.  Examining higher-loop terms one finds that they are no more singular 
than ( 3 b ) ,  even when q ( k )  is non-zero. 

Equations ( 3 )  are structurally identical to the equation proposed previously for the 
glass transition (for a review, see [5]). There are, however, some conceptual differences 
which we shall emphasise later. These equations have been studied in detail elsewhere 
[ 5 ] .  There is a continuous slowing down and freezing at a (density) temperature we 
denote by T A .  An interpretation of TA will be given below. A simple equation of state 
is obtained by assuming q( k )  is non-zero and using the fact that S( k )  is sharply peaked 
at ko,  so that we can consistently focus (this step is consistent with the previous 
approximations) on C ( k o ,  t+a) = n,S(k,)g.  From ( 3 )  we obtain 

4 = g:q2[ T + g:g2]-' (4) 
where g3 is a dimensionless cubic coupling constant. Assuming q # O  gives 4 =  
i[l i ( 1  - 4 ~ / g : ) " ~ ] .  TA is defined when this equation first has a non-trivial physical 
(real) solution, 4( T = TA) = $ and T (  T = TA) =a&. These results imply that there is a 
spontaneous glassy freezing before the liquid-state spinodal is reached ( 7  = 0), and 
that at TA we can consistently take r, g3 and g4 to be small. Also note that the term 
Toki in ( 3 c )  does not appear in (4) in accord with our philosophy that the particular 
dynamics used is irrelevant and that T A  can also be found within a purely static 
approach. 

Finally, we note that Siggia's objection [ 6 ]  does not apply to our calculation. Our 
theory is controlled because T, g3 and g4 can all be taken to be small and because the 
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wavenumber integrals inherent in the perturbation theory eliminate any T-’ terms in 
the expansion. In Siggia’s model there would be 7 - l  terms in the perturbation expansion 
leading to an  uncontrolled theory for small T. Physically, our model has an  infinite 
number of degrees of freedom while Siggia’s model [6] has only one degree of freedom, 
and consequently cannot undergo any phase transition. We expect, within our model, 
that retaining any finite number of higher-order loop terms in ( 3 b )  will not remove 
the apparent phase transition at TA.  Higher-order terms will shift the location of TA 
by a small amount if 7, g3 and g4 are small. For some non-perturbative arguments see 
below and  elsewhere [7]. 

We next derive TA and (4) within a static theory. The mathematical manipulations 
used in the static treatment are identical to those used in the TAP approach to the 
spin-glass problem using systematic perturbation theory. We then use the static descrip- 
tion to interpret the significance of the temperature we have denoted by T A .  We 
introduce two related key notions. First we imagine an  order-parameter description 
in terms of frozen density fluctuations. Since the glassy state is amorphous or aperiodic 
the density order parameter is most naturally specified by a probability measure [&I. 
Secondly, we allow for a large number of pure states (at least on a given timescale)?.. 
These states can be characterised as follows. Denote a particular macroscopic state 
by the label s, with the density field in that state given by n, = no+ an,.  We denote the 
free energy of this state by F,. The fields 6ns are given by the extremum property of 
F,. Next, compute F, from (1) by standard loop expansion techniques (see e.g. [9]). 
We then allow for a possibly large number of statistically similar but different states 
by using a partition function given by [lo] 

Here A(&)  = /det  S2F/6n21 normalises the delta function in (5a) .  Using an  integral 
representation of the delta function in ( 5 a )  introduces an  auxiliary variable 6;. 2 can 
be written as 

Equation ( 5 6 )  defines a probability measure 9 [ 6 n ,  Si?] for the fields 6n and 66. In 
usual phase transition problems 9 [ 6 n ]  is a delta function at the unique (or, more 
generally, at  all globally symmetry-related) equilibrium state( s) of the system. However, 
in general, equations (5) are capable of describing a large number of symmetry- 
unrelated states that are statistically distributed. 

We have connected the static approach to the dynamical approach as follows. 
There are three two-point propagators associated with P[ 6n, S;], namely 

P ( x , ,  x2) = (iSn^(x,)i6n^(x2)) R(xi,  ~ 2 )  =(i6n^(xi)an(x2)) 

a x , ,  x2) = ( s n ( x , ) w x 2 ) )  

where the angle brackets denote an  average with weight 9. The function R is the 
density linear response function and the function Q is the square average of a density 
order parameter. In order to have consistency with the dynamical approach, Q should 
turn out to equal qEA. We next solve for the propagators in (6) using approximations 

i For a discussion of states in disordered magnetic systems, see [8]. 
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similar to those used in the dynamical approach. To define a perturbation expansion 
for R, P and Q we assume that the field H in (1) is a small Gaussian random field 
which statistically breaks the symmetry of the liquid phase to a glassy phase. The 
random field H ( x )  serves as an external coupling term conjugate to the Edwards- 
Anderson order parameter which characterises the glassy phase. Thus, H ( x )  breaks 
the symmetry between the liquid and the glassy states in much the same way as an 
external magnetic field breaks the symmetry between + m  and -m phases of a ferromag- 
net. The variance of H ( x )  is set to zero at the end of the calculation. Carrying out a 
self-consistent perturbation expansion [ 111, using the fact that g ,  and g, are small and 
setting the random field strength equal to zero at the end of the calculation yields 
closed equations for R, P and Q. In k space these equations are 

R ( k ) = - P ( k ) = n , S ( k ) - Q ( k )  (6a )  

and 

Comparing (6) with (3) and (4) shows that Q ( k )  = q ( k )  is the glassy-state Edwards- 
Anderson order parameter and that the static and dynamic approaches are consistent 
with each other. Equation (6a) indicates that the density susceptibility (compressibility) 
satisfies the Fischer relation [4] in the glassy phase. In giving (6), we explicitly 
considered random solutions by requiring V-I dx 6 n ( x )  -+ 0, where V is the volume, 
even though the square (spatial) average of 6n is non-zero. Also note that equations 
(6) imply that the static structure factor, S ( k ) ,  is continuous across the ordering 
transition temperature, T A ,  even though q(  k )  is discontinuous at TA. 

We note that the manipulations leading to (6) are formally very similar to those 
used for mean-field spin-glass ( S G )  models [4, 12-15] where randomness occurs in the 
starting Hamiltonian. Physically the STG theory presented here is similar to mean-field 
SG because the term in the square brackets in (6b) represents a self-generated static 
random noise which is analogous to the static randomness in SG models. In the 
dynamical approach to the STG problem this term arises from the correlation of the 
renormalised random Langevin force which has a static component in the glassy phase 
due to frozen density fluctuations. Finally, we mention that to obtain (6) we used an 
infinitesimal Gaussian random field to set up the perturbation theory. Although this 
field was eventually set equal to zero its introduction forces us to use replica methods. 
In obtaining (6) we used a replica symmetry breaking scheme that assumed only 
self-overlap of the metastable glassy states. This point and why this procedure is 
needed to connect static and dynamical theories will be discussed in detail elsewhere 

We next discuss the physical significance of the temperature TA [13-151. With (5a)  
we can define two (in general) distinct free energies [lo]. The usual canonical free 
energy, F,,  is just the logarithm of 2. The second free energy is the average free 
energy, F, computed with weight exp( -pF,) /Z.  Direct calculation gives F, = FL and 
F >  F, and SP/6Q(xl) = O  leads to ( 6 )  as the equation of state. Here FL is the 
liquid-state free energy which does not depend on the order parameter Q ( k ) .  The 
inequality F, # P can occur if and only if the states leading to (6) are metastable and 
there are an extensive number of these states [16]. Since F >  F,, it follows that at TA 
the liquid-within our perturbative calculations-freezes into a metastable glass that 

~ 7 1 .  
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is stabilised by an exponentially large solution degeneracy [ 151. Within our approxi- 
mate calculation F, is not a physically meaningful free energy because it contains an 
entropic term that is a measure of states that are not probed in the timescale in which 
our calculations are valid. 

As stressed above, our calculations are controlled in a perturbative sense. However, 
in an exact non-perturbative theory we would not expect a sharp freezing at TA [13]. 
By the law of large numbers an exponentially large number of metastable states will 
have a Gaussian distribution of free energies. In a volume of O ( L d ) ,  two states will 
typically differ in free energy by an amount of O(kLd”).  The states here are therefore 
similar to those relevant in the random-field Ising model [8]. Using this and non- 
perturbing droplet-like arguments we argue elsewhere [7] that TA is a temperature 
below which the long-time dynamics is governed by activated transport as finite domains 
in the liquid change from one metastable state to another, resulting in structural 
relaxation. In this picture the solution degeneracy discussed above plays the role of 
the configurational entropy in the entropy theory of the glass transition of Gibbs and 
Di Marzio [ 171 and for t + CO the canonical free energy, F,, is the only physical free 
energy. 

Following this idea we can within our model identify an ideal structural glass 
transition temperature. We define a Kauzmann temperature [l,  131, TK, as the tem- 
perature where the configurational entropy becomes non-extensive. We find 0 < 
T (  T = TK) < T (  T = TA). Physically, we expect that below TK there are still an exLensive 
number of free-energy metastable states but that the barriers between these states and 
those we consider are too large to be relevant for any meaningful transport. The 
difference between and F,, namely the configurational entropy, is the driving force 
for activated transportation T < T A .  Thus one expects exponentially divergent relaxa- 
tion times as T -+ TK according to standard droplet arguments. This is in accord with 
experiments in viscous liquids where relaxation times are often fitted to a Vogel-Fulcher 
law [l]. 

TRK acknowledges very useful correspondence with P G Wolynes. This work was 
supported by National Science Foundation grants DMR-86-07605 and CHE-86-09772. 
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